
Quick integration Guide (SDK v3.1) 
AdDeals SDK for Windows & Windows Phone 8.1+ universal apps / Windows apps. C# XAML, Unity. 

 

HIGH QUALITY ADDEALS INTERSTITIAL ADS EXAMPLES: 
 

WINDOWS TABLET/PC (Portrait & Landscape supported) 
 

  

 

WINDOWS PHONE (Portrait & Landscape supported) 
 

   
 

PREREQUISITE: 

 Register for free on http://www.addealsnetwork.com 

 Add your game/apps and get your appID/appKey 

 

SPECIAL NOTE FOR 3.5+ stars games (top games): 

 3.5+ games will benefit from special high payout campaigns, including some guaranteed 

CPMs targeted to top Windows games, which will guarantee higher revenues to studios and 

independent game developers on the Windows platform. 

http://www.addealsnetwork.com/


I. Procedure to integrate AdDeals SDK from a Windows Universal 

app (native): 

 

1. [Mandatory] Install AdDealsUniversalSDKW81.dll as a reference to 

you Windows and/or Windows Phone Visual Studio project. 

 

In your project references: click on ‘Manage NuGet Packages’, look for ‘AdDeals’ and click on Install 

 

 

Or in your nuget Package Manager console, select your project and type: 

 

 

 

 

2. [Mandatory] Get your mobile/desktop AppID/AppKey from your 

AdDeals account http://www.addealsnetwork.com. Login, add your Windows app and get your 

credentials. 

 

 

http://www.addealsnetwork.com/


3. [Mandatory] Initialize AdDeals SDK @app launch. 

Add the following code on you app first page displayed only, usually in OnNavigatedTo() (in most 

project, this is usually MainPage.xaml or HubPage.xaml)  

    protected async override void OnNavigatedTo(NavigationEventArgs e) 
    { 
       await AdManager.InitSDK(this.LayoutRoot, "YOUR_APP_ID", "YOUR_APP_KEY");   
    }      
    

YOUR_APP_ID Provided by AdDeals, once you have added your 

app 

 

YOUR_APP_KEY Provided by AdDeals, once you have added your 

app 

 

this.LayoutRoot “LayoutRoot” is the name given to the 

Grid/Main Panel of your XAML page code. 

You can give the name you want, but this is 

required, for instance:  

 

<Grid x:Name="LayoutRoot" Margin="0"> 

 

 

For Unity apps older than 5.0, OnNavigatedTo() code may not be called. Load this InitSDK() code 

once in another method that’s called by Unity. 
 
 

Optional events when initializing AdDeals SDK (InitSDK()) 
AdManager.AppDownloadSourceDetected += AdManager_AppDownloadSourceDetected;  
// [OPTIONAL - For exclusive offer / campaigns] 
AdManager.AppSessionSourceDetected += AdManager_AppSessionSourceDetected;        
// [OPTIONAL - For exclusive offer / campaigns] 
AdManager.InitSDKSuccess += AdManager_InitSDKSuccess; 
AdManager.InitSDKFailed += AdManager_InitSDKFailed; 

 
 
 

4. Show interstitial ads (from C# code, cross-promo supported) 
Wherever you want to display AdDeals full screen interstitial ads (once you have initialized the 

SDK), you just have to call:  

 

To preload/cache the ad (optional!) 
AdDealsPopupAd cachePopupAd = await AdManager.GetPopupAd(this.LayoutRoot, 
AdManager.AdKind.FULLSCREENPOPUPAD); 
await cachePopupAd.CacheAd(); 
 
To display the cached ad or a non-cached ad directly (this will get the last ad cached) 
AdDealsPopupAd popupAdToShow = await AdManager.GetPopupAd(this.LayoutRoot, 
AdManager.AdKind.FULLSCREENPOPUPAD);  
popupAdToShow.ShowAd(); 
 
 
 



You can get notified about several events that can occur when interstitial ads are called, displayed 

or closed for instance. Here is how you can add events to get programmatic feedbacks. 

 

Optional events when trying to cache an ad (CacheAd()) 
AdDealsPopupAd cachePopupAd = await AdManager.GetPopupAd(this.LayoutRoot, adKind); 
cachePopupAd.CacheAdSuccess -= CacheAdSuccess_Event; 
cachePopupAd.CacheAdFailed -= CacheAdFailed_Event; 
cachePopupAd.MinDelayBtwAdsNotReached -= MinDelayBtwAdsNotReached_Event; 
cachePopupAd.SDKNotInitialized -= SDKNotInitialized_Event; 

 

Optional events when trying to show an ad (non-cached or 

cached ad) (ShowAd()) 
AdDealsPopupAd showAd = await AdManager.GetPopupAd(this.LayoutRoot, adKind); 
showAd.AdClosed += AdClosed_Tap; // OPTIONAL. This is triggered when the popup ad 
is closed. 
showAd.AdClicked += AdClicked_Tap; //OPTIONAL. This is triggered when an ad is 
clicked by end user. 
showAd.ShowAdFailed += ShowAdFailed_Event; // OPTIONAL. This is triggered when no 
ad is available or an issue occurs (slow network connection...) 
showAd.ShowAdSuccess += ShowAdSucess_Event; // OPTIONAL. This is triggered when an 
ad is displayed to end user. 
showAd.MinDelayBtwAdsNotReached += MinDelayBtwAdsNotReached_Event; // OPTIONAL. 
This is triggered when you try to call more than 1 ad in a very short period of 
time (less than 3 sec). 
showAd.SDKNotInitialized += SDKNotInitialized_Event; // OPTIONAL. This is triggered 
when you try to load an ad without initilizing the SDK. 
showAd.VideoRewardGranted += ShowAdVideoRewardGranted_Event; // REQUIRED FOR 
REWARDED VIDEOS (not available at this stage) If you want to notify the end user 
that a video view has been completed. 
 

 
 

5. Show AdDeals Wall (WPhone only, cross-promo supported) 
 
    /* Hide status bar */ 
    StatusBar statusBar = Windows.UI.ViewManagement.StatusBar.GetForCurrentView(); 
    await statusBar.HideAsync(); 
 
    AdDealsWall wall = AdManager.GetWallAd(); 
    wall.AdClosed -= AdClosed_Wall; 
    wall.AdClosed += AdClosed_Wall;  
    wall.ShowAd(); 
 
    /* OPTIONAL - Delegated event when AdDeals ad is closed by end user */ 
    private async void AdClosed_Wall(object sender, EventArgs e) { 
    StatusBar statusBar = Windows.UI.ViewManagement.StatusBar.GetForCurrentView(); 
    await statusBar.ShowAsync(); } 
 
 
 
 
 
 
 
 
 



6. Show banner ads (XAML UserControl) – No cross-promo 
 

Go to your XAML Page, where you want to show an ad banner and add: 
xmlns:addealsad="using:AdDealsUniversalSDKW81.Views.UserControls" in the namespaces 
in the Page item. 

 

a. Windows Phone app supported XAML codes/Ad formats (copy and paste this code inside 

your XAML page) 

 

320x50 standard BANNER AD: 

<addealsad:AdDealsBannerAd 
AdType="BANNER_WINDOWS_PHONE_320x50"></addealsad:AdDealsBannerAd> 
 
 
 

b. Windows Tablet/PC app supported XAML codes/Ad formats (copy and paste this code 

inside your XAML page) 

 

160x600 PC/Tablet WIDE SKYSCRAPER AD: 

<addealsad:AdDealsBannerAd 
AdType="WIDE_SKYSCRAPER_WINDOWS_TABLET_PC_160x600"></addealsad:AdDealsBannerAd> 

 

728x90 PC/Tablet LEADERBOARD AD: 

<addealsad:AdDealsBannerAd 
AdType="LEADERBOARD_WINDOWS_TABLET_PC_728x90"></addealsad:AdDealsBannerAd> 

 

250x250 PC/Tablet SQUARE AD: 

<addealsad:AdDealsBannerAd 
AdType="SQUARE_WINDOWS_TABLET_PC_250x250"></addealsad:AdDealsBannerAd> 
 

300x250 PC/Tablet MEDIUM RECTANGLE AD: 

<addealsad:AdDealsBannerAd 
AdType="MEDIUM_RECTANGLE_WINDOWS_TABLET_PC_300x250"></addealsad:AdDealsBannerAd> 
 

 

TESTING MODE AVAILABLE: 
Before you start implementing the SDK, please note you can activate the Ad testing mode while 

developing. Go to your AdDeals account: http://www.addealsnetwork.com, then to your app, and app 

settings. Ad testing mode allows you to see test ads worldwide while developing. 

 

 

 

 

 

 

http://www.addealsnetwork.com/


II. Procedure to call AdDeals SDK methods from a Unity3D app 

(bridge Windows - Unity)  

(We provide this as a helper without specific support for Unity but this can 

help you a lot to integrate AdDeals SDK) 

 

1. Open your Unity Windows generated project in Visual Studio 

 

2. Follow previous steps I. 1. to I. 3. by adding AdDeals SDK and 

initializing the SDK from your Windows Universal app C# code. 

 

3. Here is an example of how you can show AdDeals interstitials 

from your Unity project: 

 

a. Sample code 

1/ On the Unity side, create a static callback, for instance: 

public class WinRTGateway 

{ 

    public static Action OnShowAdDealsInterstitial = null; 

    public static void ShowAdDealsInterstitial() 

    { 

        if (OnShowAdDealsInterstitial != null) 

        { 

            OnShowAdDealsInterstitial(); 

        } 

    } 

} 

 

2/ On the Universal project side set this callback to a method that actually calls the 

proper SDK code:  

WinRTGateway.OnShowAdDealsInterstitial = OnShowAdDealsInterstitial; 

 
An here is the SDK code on the Universal project side that shows the ad: 

private void OnShowAdDealsInterstitial() 

{ 

        AppCallbacks.Instance.InvokeOnUIThread(new AppCallbackItem(async () => 

        { 

              try 



              { 

                  // Show previously loaded AdDeals interstitial 

                  AdDealsPopupAd popupAdToShow = await 

AdManager.GetPopupAd(DXSwapChainPanel, AdManager.AdKind.FULLSCREENPOPUPAD); 

                  popupAdToShow.ShowAd(); 

              } 

              catch (Exception) { } 

        }), false); 

} 

 

3/ On the Unity side  

To show an ad invoke this action from the Unity side when needed (e.g. when level is 

completed, at launch, when the user lost a game…):  

WinRTGateway.ShowAdDealsInterstitial(); 

 

Please note you can use the exact same technic to cache ads, ar call other AdDeals SDK method 

since this is how you can call Windows Universal methods from Unity when no Unity plugin is 

available. 

 

b.  Give a name to your main Panel: here, DXSwapChainPanel 

The Universal project that is generated by Unity contains a default MainPage.xaml template 

page that looks like this: 

<Page 

    x:Class="Template.MainPage" 

    IsTabStop="false" 

    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 

    xmlns:local="using:Template" 

    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 

    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 

    mc:Ignorable="d"> 

 

    <SwapChainPanel x:Name="DXSwapChainPanel"> 

        <Grid x:Name="ExtendedSplashGrid"> 

            <Image x:Name="ExtendedSplashImage" Source="Assets/SplashScreen.png" 

VerticalAlignment="Center" HorizontalAlignment="Center"/> 

        </Grid> 

    </SwapChainPanel> 

</Page> 

The important part is the SwapChainPanel which is by default called DXSwapChainPanel (this is 

where you can change it if needed). The SwapChainPanel is responsible for rendering you XAML 

specfic UI (including all ad units used by the ad SDKs) above you 3D/2D game content. 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


c. How to get notified about AdDeals SDK events to my Unity 

code/side? 

 

Let’s assume: adClosed(object sender, object e) is a callback method called after AdDeals SDK 

notifies that the user closed the interstitial ad. Then the following method is called inside the 

Windows Universal app and inside this method you can call the function in the Unity side: 

 

Here are 2 examples to call an action from the Universal project side to the Unity side:  

private void AdClosed_Tap(object sender, object e) 

        { 

            AppCallbacks.Instance.InvokeOnAppThread(new AppCallbackItem(() => 

            { 

                WinRTGateway.interstitialAdState = WinRTGateway.InterstitialAdState.Closed; 

                WinRTGateway.OptionallyDoSomethingUnitySide(); 

            }), false); 

        } 

private void VideoAd_Completed(object sender, object e) 

        { 

            AppCallbacks.Instance.InvokeOnAppThread(new AppCallbackItem(() => 

            { 

                WinRTGateway.VideoAdAvailable = false; 

                WinRTGateway.videoAdState = WinRTGateway.VideoAdState.Completed; 

                WinRTGateway.UnlockPremiumLevel(); 

            }), false); 

        } 

This example is used to handle adClosed (or videoad_completed – ‘fake sample for understanding’) 

from the Universal project side and signal to the Unity project side where the unity logic is handled. 

You can replace this easily with any event. The important part is that the WinRTGateway in the 

example is implemented on the Unity side an to access it you need to use the 

AppCallbacks.Instance.InvokeOnAppThread() method that can handle calls from the Universal 

project's UI thread to Unity's main thread. Alternatively you can use the exact opposite 

AppCallbacks.Instance.InvokeOnUIThread() method that handled calls from Unity's main thread 

to the Universal project's UI thread. The correct thread handling is important because without these 

methods all kind of nasty exceptions will occur. 

 

 

Official docs for the AppCallbacks class:  

http://docs.unity3d.com/Manual/windowsstore-appcallbacks.html 

 void InvokeOnAppThread(AppCallbackItem item, bool waitUntilDone) 

http://docs.unity3d.com/Manual/windowsstore-appcallbacks.html


Invokes a delegate on application thread, useful when you want to call your script function 

from UI thread. 

 void InvokeOnUIThread(AppCallbackItem item, bool waitUntilDone) 

Invokes a delegate on UI thread, useful when you want to invoke something XAML specific API from 

your scripts. 


